(THRY

O
Yo

N
.~

Zm
-
. ©

GPO PRICE

T09

$

CFSTI PRICE(S)

{cODE)

Hard copy (HC)

icrofiche {(

M

# 653 July 65




RE-27*

ROTATION INVARIANT PROBABILITY DISTRIBUTIONS ON THE
SURFACE OF A SPHERE, WITH APPLICATIONS TO GEODESY

by

James E, Potter
and

Elmer J., Frey

May 1967

EXPERIMENTAL ASTRONOMY LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS, 02139

Approved: LO.- (‘1‘“’“£L“7

Director
Experimental Astronomy Laboratory

S

*This report is to be presented at the International
Colloguium on Dynamic Methods in Satellite Geodesy,
sponsored by the Centre National d'Etudes Spatiales
at Paris, France, May 22-26, 1967






RE-27
ROTATION INVARIANT PROBABILITY DISTRIBUTIONS ON THE
SURFACE OF A SPHERE, WITH APPLICATIONS TO GEODESY
by
James E, Potter
and
Elmer J. Frey

May 1967

ACKNOWLEDGMENT

This report was prepared under DSR Project 76006
sponsored by the Air Force Cambridge Research Labora-
tories through research contract AF 19(628)-5546, and
under DSR Project 76145, sponsored by the National
Aeronautics and Space Administration through greant

NsG 254-62.

The publication of this report does not consti-
tute approval by the Air Force or the National Aero-
nautics and Space Administration of the findings or
the conclusions contained therein. It is published

only for the exchange and stimulation of ideas.

iii






RECE
‘P:,ECEBING PAGE BLANK NoT FILIAED

Abstract

Rotation Invariant Probability Distributions on the Surface

of a Sphere, with Applications to Geodesy
by

James E, Potter
Assistant Professor of Aeronautics and Astronautics

Massachusetts Institute of Technology
and

Elmer J. Frey
Lecturer in Aeronautics and Astronautics
Director of Geodetic Programs
Experimental Astronomy Laboratory
Center for Space Research

Massachusetts Institute of Technology

Gravity anomalies over the geoid are treated as a stationary sto-
chastic process whose spectrum is shown to be positive, A class of
linear transforms defined over the surface of a sphere and invariant un-
der rotations is considered and the spectrum of such transforms is de-
fined. The transform of the random process is shown to have its own
spectrum which is expressed as a product of the spectra of the original
random process and of the transform. Examples of rotation invariant
transforms are the transforms which express undulations in an equipo-
tential surface, or deflections of the vertical, or gravity anomalies
at any altitude in terms of the gravity anomalies at the surface. An
example is worked out in which it is shown that the convolution expres-
sion for the linear transform represented by the Poisson kernel which
carries the potential function from one radius to another may be repre-

sented by a single integral involving a complete elliptic integral,



1. Introduction

The evaluation of very high harmonics of the earth's gravi-
tational field may be of interest in airborne gravimetry or satel-
lite geodesy, if knowledge is desired, at altitudes above the ge-
oid, of gravity anomalies, deflections of the vertical, or of undu-
lations of the equipotential surface. These latter quantities may
be expressed as linear integral transforms of the gravity anomalies
at the geoid surfacefl) Without knowledge of the anomalies over
the entire surface, the classical Stokes integral formulas cannot
provide exact expressions of the desired quantities. However, the
statistical information about the anomalies at the surface may be
used to provide certain statistical parameters of the desired ex-
pressions at altitude.

Kaula(z) has treated gravity anomalies over the geoid as a
random process described statistically by a covariance function
invariant under translation on the surface, and has derived the
spectrum of the random process using the methods of Wiener's gen-
eralized harmonic analysiss3) In communications and control sys-—
tems theory these methods are widely used in the spectral analy-
sis of random processes with time as the independent variable,
and of linear transforms of the random processes., This article
is devoted to the description of certain linear transforms defined
over the surface of a sphere and to the derivation of the spectra
of such linear transforms of stationary random processes on the
sphere,

The stationary time series is one whose statistics are in-
variant under a translation in time and has a particularly simple
covariance function, The corresponding definition for a random
process defined over the surface of a sphere requires invariance
under a translation on the surface, which corresponds to invari-
ance under any rotation about the center. Such statistics are ap-
propriate for the derivation of a common statistical parameter to
describe an arbitrary path above the surface, The covariance



function of a random process ¥(t) is the statistical average of
x(tl)y(tz) and for a stationary process is a function only of

the interval t2 - tl. The covariance function of a stationary
random process cdefined on the sphere depends only on the distance
between the two points. The Fourier transform of the covariance
function of a stationary time series is a non-negative quantity
which represents the power spectral density of the series. The
covariance function of the stationary process on the sphere has

a non-negative spectrum represented by the coefficients in a Le-
gendre polynomial expansion, The spectrum of the time series is
a function of frequency alone and contains no phase information,
Similarly the spectrum of the process on a sphere represents only
the degree of spherical harmonics and not the order.

The linear operators associated with random processes in
control system theory represent linear ordinary differential e-
quatioﬁs in the time domain, with stochastic inputs. The spec-
trum of the operator is renresented by the transfer function of
the differential equation, and the spectrum of the transformed -
quantity is a product involving the spectra of the random process
and of the linear transform. 1In the case of linear transforms
over the sphere, the kernels of certain rotation-invariant trans-
forms are shown to have spectra analogous to those of the constant
coefficient linear differential equation operator. The spectrum
of the transformed quantity is again a product involving the spec-
tra of the random process and of the transform,

The development involves first the definition of rotation
invariance for probability distributions and for linear operators
over the surface of a sphere. The spectrum of the random process
is shown to be positive, the spectrum of the linear operator is
derived, and the spectrum of the transformed function is derived,
Finally, an example using the Poisson kernel is chosen and a rep-
resentation of the convolution with the Poisson kernel is ob-
tained as a single integral involving in the integrand a complete

elliptic integral of the second kind,



2., Rotation Invariant Probability Distributions and QOperators

on the Surface of a Sphere

Let points on the surface S of the unit sphere be repre-
sented by unit vectors* e, Let H denote the Hilbert space L2(S)
with the inner product (f,g) of two functions f(e) and g(e) de-
fined as the integral of their product with respect to surface

area:

(£,9) = J‘Sf(g)g@.) ds (e) (1)

Let X(e) be a random function on S with covariance function:

C*(e1,e2) = x(e1)x(e2) (2)

and let C*(ej,ep) be the kernel of a linear "covariance" operator
¢ on H:

Cf = [ cx(eg,ep)f(ey) ds(ep) (3)
L CTle1eg2tie2) dste;

I1f £ and g are L2 functions over 8, € = (£,X) and n = (g,%)
are scalar random variables, and:

TH = (£,09) = (Of,9) (4)

C is self-adjoint since the kernel C* is symmetric.

*The following notation is used:
Vectors are represented by underlined lower case letters,
A horizontal line above a symbol represents a statistical average.
The kernel of a linear integral operator which is a function of
two unit vectors is represented by an upper case letter with an
asterisk superscript; the corresponding operator is represented
by the same letter with a tilde, as in Eq (3). When the kernel
reduces to a function of one variable, the upper case letter
without the asterisk is used to represent the function,

-3 -



Let L be a linear operator on H, let R be a rotation matrix
and let f be L2, Define the function f'(e) by the relation:

£'(e) = £(Re) (5)

Let g = Lf and g' = Lf', Then ﬁ is defined to be a rotation in-
variant (RI) operator if:

g'(e) = g(Re) (6)

for every R and every f,

If the statistics of the random process ¥(e) are rotation
invariant, ¢ is a RI operator. The Poisson operator which relates
potential functions at different radii is an example of a RI op-
erator.

3. Spectrum of RI Operators and Distributions

Let L*(el,ez) be the kernel of the integral operator E:

gleg) = LE(ey) = [ L¥(eg,e))f(e,) ds(e,) (7)

|y

V)
For L to be RI it is necessary and sufficient that L* be a function

only of ejr+e,, or:
L*(e1,e2) = L(eg-ey) _ ~ (8)

Let I be expanded in the series of Legendre polynomials:

o 1
\ 2k + 1
L) =) | Z5EL T (L) au| P (x) (9)
k=0 S
and let Sk be the RI operator with kernel Pk(x). Then if fe(g)

is a spherical harmonic of degree e:



~ 4

Prfe = 26+ 1 Pkefe (10)
whereb ke is the Kronecker symbol Equations (9) and (10) show
that the eigen functions of. L are the spherical harmonic poly-

nomials and the eigenvalues are the coefficients:
1
L, = 2n{l L (x)B(x) dx (11)

so that Eg (9) may be rewritten:

=]

L(x) = Z%kig(zk + 1)L, P, (x) (91)

The corresponding Parseval relationship is:

1 o ,
f L% (x) dx = _;_2_ ), 2k + l)Lf: (12)
81T 1o
-1 k=0

The spectrum of the linear operator E , represented by the

eigenvalues Lk' corresponds to the transfer function of the linear
constant coefficient ordinary differential equation operator in
‘the time domain., The eigenvalues of the covariance operator g
will be called the power spectrum of the probability distribution.

The next step is to show that the spectrum C, is positive,

k
Let fk be a spherical harmonic of degree k. Then from Eq (4):

2 _ = (o '
Since C(x) may be expressed in Legendre polynomials as:

clx) =) AZtl) R, (x) (14)
k=0

with coefficients Cy defined as in Eg (9), the operator C may be
expressed in the form:

2k + 1) + 1 5 15
Z CkPk | (15)



Application of Egs (10) and (15) to Eq (13) produces:

(fk'X)z = Z(Cegefk"i)= Ck (16)
e=0

if the fk
the square of a scalar quantity, which must be non-negative, and

are normalized, Thus Cy is expressed as an average of

the spectrum is positive, just as the Fourier transform of the co-
variance function of a stationary time series is positive.

4, convolution of Two Kernels

The product of two RI operators is RI. Let:

N = ML | (17)
Then:
N*(el,ez) = f M*(el,e3)L*(e3,e2) ds (e3) (18)
e 8 I S —
and: g’zn
N(x) = f f M(y)L(z)cos 4 46 dd (19)
- O
2
where:

y = x cos 4 cos 6 + N1 - x% cos g sin 0

z = cos 4 cos 6 (20)

Denote this convolution operation by N = M*L. From the

k = Mhy.

5. Statistics of Rotation Invariant Transforms

preceding section, it follows that N

(a¥) ~s
Let L and M be RI operators and let:

o
t—4

¢=§x.-9 MY (21)

where ¥X(e) is a RI random process with covariance function C*(el,ez).



Now let:

P*(ey,e ) = V(eg)b(ey) (22)

be the statistical average of the product w(el)e(ez).

Let £ and g belong tc H and let:
§ = (£,¥) , n= (£,0) (23)

len
En = (£,Bc) (24)

From Egs (3) and (4):

(£,0) = (£,M0) = (£, %) 1 o)
(g, ¥) = (9,LY) = (Lg,¥) J e
TR = (Mf,CLg) = (f,MCLG) | (26)

Consequently, the covariance operator P, its kernel P, and its
spectrum Pk are:

P=MCL : (27)
P = MC*L (28)
P, = M CL (29),

Equation (29) shows that the spectrum of an RI transform of an
RI stochastic process is also positive, for this is the case when
Mk = Lk Kk*
ceding expressions are also useful in calculating the cross- spec-

and P consequently has the same sign as C The pre-

tra of two different transforms of the same random process,

6. The Poisson Operator

The kernel of the Poisson operator is:



2 2
L) = ro (™ - ro)
amlr? + rg - 2rrox]3/2
r \e rol\k
= zlﬁ(FO)E (2k + 1)(-;3) Py (%) (30)
k=0

so that the spectrum of E is:
ro\k+1
L, =\ ¢ (31)

Let R(x) be the covariance of the potential at radius ry
with the potential of another point at radius r, and with a radius
making an angle y with the first radius (x = cos y). The power
spectrum of R is:

r, k+1 r, k+1
Rk = Ck }—]_ ;; (32)

where C. is the spectrum of the potential at radius rye If C(x)

is a covariance function, Ck > 0 for all k; furthermore, if the
© =

CkAare non-negative and]zO(Zk + l)ck converges, there exists a
<=

Gaussian distribution with covariance function C(x). 1In particular:
©0

1
= 4n Z' (2k + 1)C (33)
k=0

represents the mean square value of the random function ¥ (e).

c(0) = x?

7. Representation of Convolution with the Poisson Kernel as a

Single Integration

The Poisson kernel for transforming a potential from radius
r to radius r, is:

1
. 1 o(l - az)
Pt T T oE C 2an 2 o)
where: . fg (35)
1



Using this definition

p Y (36)

where vy = 0f, The calculation of the covariance of the potential
at two different radii ry and ¥

2
p(Er, 2 r) =TE eIl ]
( r f10 T, o) = (Pgxlerll (Pyx)ey (37)
reduces to the convolution:
= ’*
D PYC (38)

where C is the covariance function for roand

2
r
o)

rlr2

Y = (39)
The convolution (38) will be expressed as a one-dimensional
integral; that is, an R(x,y) will be found such that:

D(x) = flR(X.y)C(y) dy (40)
..l '
Such an expression might be more useful than the Legendre
polynomial expansion of D(x) for investigating short correlation
distances.

Equation (38) may be rewritten: ’
D(ey.,ep) =éf P () e3)Clez ey) ds (e;) (381)

Define:
e;+ e, = cos 4 (41)

wWithout loss of generality, rotation invariance permits
-simplifying the equations by assuming: '



®
H
~

2
e; = cos Yy k + sin ¥ i ' (42)
e; = cos g k + sin g (cos 6 i + sin 8 j)

where i, j, k are the usual unit vectors and g and 6 represent
the colatitude and longitude of the point represented by eq- Then:

op" &3 = 00 #
e;+ e3 = cos # cos ¥V + sin 4 sin { cos 6 (43)
ds(e;) = sin ¢ 46 ad

and the convolution expression (40) takes the form:

m{fe2m
D(cos V) = f f PY(cos VY cos g + sin V¥ sin 4 cos 6) d6)C(cos F)sin 4 a4

o \0 (44)
where the expression within the brackets:

2m
u(v,#) =Ony(cos ! cos § + sin ¥ sin £ cos 6) d6 (45)
replaces R(x,y) Symmetry of cos 6 reduces (45) to:
™
u(y,d) = 2j5 P, (cos ¥ cos g + sin ¥ sin g cos 0) d6 (451)
and (44) becomes: m
D(cos ) = f Uu(¥,8)C(cos #)sin 4 dF (44")
0

If p(x) is defined by

p(x) = Ji + Y2 - 2yx (46)
then:
2
P (%) = ljl_g_l_) (47)
Y 4mp > (X)
Setting: X =cos ¥V cos 4 + sin ¥V sin 4 cos 6 (48)

- 10 -



5 .
T =1 + Y2 - 2Y(cos ¥ cos g + sin V¥ sin g cos 0)
2 2 0 \

=1+ Yy - 2ycos(V¥ + #g) - 4y cos 5 sin V sin & (49)

or: pz = 02(1 - azcos2 Q) (50)
o) 2

where: Po = Jl + Y2 - 2ycos (U + £) (51)
. T ‘,

a = [ 4ysin & sin U (52)

V1 + y2 - 2ycos (V+4)

and a is real since both | and 4 range between o and T, From
the relationship:

2
1 - g2 = L& vz - ZYcosjyfél (53)
1 + v¢ - 2vycos(U4g)

which is a non-negative quantity, the result follows that:

2

a 1 (54)

A

Thus if m is used to replace'%, there follows:

v
1 - y2 2 g 55
U(w'd) = ( Y¥l>j n ( )

npo3 o [1- acos? ﬂ]3/2

This can be simplified into the form of the complete elliptic

integral of the second kind:

o
-2' 4
E(a) =OJ J 1 - a’sin® # an (56)

by use of the relationship:

dn 3/ = Efa}z . ‘ (57)
0" [1 - a? cos? n]~" 2

e N

- 11 -



which is proved below. The final form of Eq (45) thus becomes:

v(l - y)E(a)

11[]_ 4 yz - 2YCOS(“’"¢)] ;\/L‘l + YT- 2YCOS(¢+¢)

u(y,g) = (58)

where a and E(a) are defined by (52) and (56).

To prove Eq (57) is valid, use the complete elliptic integral
of the first kind:

LS UL
2 dn 1 2 dn
K(a) = I - =3 f > (59)
0 Ji - a cos2 mn 0 J 14& T cost M
whence: "

2 an

dK V
a'a'a—=—K+f (60)

0" [1 - a’cos® n13/2
However, the elliptic integrals satisfy:

dK _ _ E(a
a3y = K+1—-(—)-2- (61)

whence Eq (57) follows immediately.
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(2)
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